網路城邦
回本城市首頁 中國論壇
市長:乱石  副市長: 中州楚佩紫气东来
加入本城市推薦本城市加入我的最愛訂閱最新文章
udn城市政治社會政治時事【中國論壇】城市/討論區/
討論區國際政治時事 字體:
看回應文章  上一個討論主題 回文章列表 下一個討論主題
【转帖】福岛核电站到底发生了什么?
 瀏覽6,985|回應14推薦7

deutschina
等級:
留言加入好友
文章推薦人 (7)

集集
Rosy
雲淡風輕w
小夜函
麥芽糖
方天画戟
riquelme

注:对于这个东东,俺完全是小白,所以只有看一些看似比较靠谱的比较详细的介绍。也希望对此了解的,针对这篇文章提出自己的质疑。还有就是这篇文章是14日的,现在情况或许也有变化,所以未被一些结论现在依旧适用。但是,个人认为,不管怎样,这篇文章算是可以让我们比较详细的了解到底是怎样一回事(如果作者文章没有太大错误的话)

这是关于该核电站容器可能破裂的新闻:福岛核电站2号反应堆容器出现破损 或酿核泄漏

以下是转载正文部分,至于分析正确与否,只有靠各位网友自行判断了--我也不了解的说~

http://news.ifeng.com/mil/special/fudaohedianzhanbaozha/index.shtml

日本福岛核电站为何爆炸

日本福岛核电站为何爆炸,是核燃料爆炸么?这是每一个人都会关注的问题,在强大的核能面前,人们始终存有敬畏之心。日本当局却表示,爆炸是氢气爆炸,而非反应堆爆炸;从爆炸后的辐射量监测结果显示,核反应堆的安全壳损坏程度不大,中央控制室也没有遭到破坏。这种说法令人无法相信,是不是在隐瞒事实?是不是在推委搪塞?东亚各国公众无不焦虑。 为什么核反应堆停止工作了还会产生重大事故 这次日本核事故是在一连串灾害的打击下引发的。核反应堆的一个特点是在停堆后仍需要对堆芯进行冷却,因为核燃料有自衰变余热,虽然比人控裂变产生的热量小的多,但是如果长时间得不到冷却,也会使得堆芯达到上千度的温度,导致核燃料棒融化,然后是烧穿外层保护的钢壳、混凝土结构等,造成核泄漏。

 而在反应堆停堆的情况下,余热冷却系统的泵所需的电力就需要从外部输入。一般情况会准备多路外电网输入,同时每台机组一般有2台应急柴油发电机供电,而且同一电厂内的其他机组的应急柴油发电机也可以互相备用。

  但在这次强烈地震后,日本福岛第一核电厂的外电网全部瘫痪了,自身的应急柴油发电机在运行一小时后,也因为海啸的袭击而全部丧失,这就导致失去所有外部电源供应,堆芯失去强迫冷却手段。

核反应堆里的氢气究竟是从哪里来的?

祸不单行,核燃料棒的包壳中有一种叫锆的金属元素。用核动力发电,每一百万千瓦的发电能力,一年就要消耗掉20到25吨金属锆。它具有低的热中子吸收截面,作为核燃料包壳和结构材料,它处在核反应堆核能裂变反应、核能转换成热能的释发部位,又是防止反应堆放射性裂变产物向外逸出的首道屏障。  

但问题是,锆在高温下,会与水蒸汽产生剧烈的化学反应,锆将水分解为氢和氧,于是产生了大量的氢气,同时伴随着放热。这种反应通常会发生在压水堆丧失冷却事故的后期阶段,核燃料元件棒束未被冷却液浸没而处于裸露状态,就产生了锆水反应。但反应堆都会设计和安装排氢系统,以避免爆炸的产生。   

日本反应堆的排氢系统已经没有能源供应或已经在地震中损毁,所以没有正常工作,于是最终引发了这场悲剧。当然,也有些观点认为是核电站汽轮机氢冷系统(大型电机空冷或水冷都不能满足需求,只能用氢冷)泄露。不过那些氢气的量较少,且远离核反应堆,对此说我们暂且存疑.

发生爆炸的具体过程是怎样的?

在地震后,日本有关方面12日努力恢复电源并派出了自卫队的核生化武器应对部队,向反应堆内输送了大量的冷却水。特别是当地时间15时20分,为加快冷却效果,日本政府下令自卫队再加大投入,从附近各地水源地取水输送到核电站现场。

但据凤凰嘉宾叶千荣的报告,正是往反应堆内加注冷却水的时候,在当地时间16时53分左右,突然发生了爆炸。很可能就正是输送大量冷却水的行为,导致了锆水反应的产生。日本在抢救时没有料到核燃料元件棒束已经处于裸露状态,输送大量冷却水产生了氢气,引发了爆炸。剧烈的混合可燃气体爆炸,炸开了核电站反应堆厂房。

既然福岛核电站已经爆炸,那么会造成多大程度的核泄漏?会重演切尔诺贝利么?要了解这一点,需要探究不同核电站的结构.

切尔诺贝利——没有安全壳的古董级反应堆酿成悲剧

切尔诺贝利核电站事故是这样的一系列过程,首先是操作人员严重违反操作规程,切断了反应堆保护系统;反应堆长期强行在低功率下运行,处于不稳定状态;然后突然功率失控几秒钟内上升了几百倍;燃料包壳因过热而爆裂;导致蒸汽爆炸和压力管全部断裂;结果引起锆水反应和石墨燃烧。   

切尔诺贝利的核反应堆作为最老式的核反应堆,没有设置坚固的安全壳,因而强放射性物质立刻扩散到环境和大气中。

切尔诺贝利核电站重大悲剧的来源是——他是苏联极为老旧的石墨堆叠式反应堆,既没有内层的压力安全钢壳,更没有外层的厚重的混凝土安全壳。一发生爆炸,不但核燃料立即泄露,而且石墨粉尘在火光中扶摇直上九云霄,污染了大半个欧洲。

三里岛核事故——核物质都闷在现代核反应堆的安全壳里

美国三里岛核电厂二号堆于1979年3月28日发生的堆芯失水而熔化和放射性物质外逸的事故。这次事故是由于工人检修后未将冷却系统的一个阀门打开,致使二回路的水断流,当堆内温度和压力在此情况下升高后,反应堆就自动停堆,同时应急堆芯冷却系统自动投入   

但操作人员却判断错误,反而关闭了应急冷却系统。这一系列的管理和操作上的失误与设备上的故障交织在一起,使一次小的故障急剧扩大,造成严重事故。铀燃料虽然没有熔化,但有60%的铀棒受到损坏,反应堆最终瘫痪.   

但在这次事故中,主要的工程安全设施都自动投入,同时由于反应堆有几道安全屏障(燃料包壳,一回路压力边界和安全壳等),因而无一伤亡,在事故现场,只有3人受到了略高于半年的容许剂量的照射。泄露的少量蒸汽,也不会对环境和周边居民造成实质影响。虽然三里岛事故早于切尔诺贝利,但三里岛的反应堆比切尔诺贝利先进得多,也正是目前普遍应用的压水堆。

日本当局加派自卫队核生化应急处理部队到现场,并将核电站的疏散距离从10公里扩大到20公里。倒塌破损的核电站反应堆厂房,震撼了东亚地区的公众,这是否又是一次切尔诺贝利呢?它会造成东亚的核事故危机么?

压水堆和沸水堆——不少专家都搞错了的概念

这次核电站爆炸的新闻报道和评述中出现了很多值得一提的错误,如不少核专家在看到厂房被炸开之后,忧心忡忡地说,完蛋了,切尔诺贝利又重演了。很多有科学素养的公众,也按照惯常的经验,特别是切尔诺贝利经验,日本故障核反应堆最关键的最后一道防线已经在爆炸中损毁,放射性物质已经直接与环境相接触。而且反应堆堆芯很大程度上已经融毁。感觉到严重的、真正的核泄漏事故已经发生,感到异常恐慌、忧心忡忡。

不过,按日本政府公布的消息,核反应堆安全壳尚完好。这其中有什么区别么?

原来,中国大陆的反应堆都是新式的压水堆,这种安全措施相对较老的沸水堆其实中国也不是没有——在海峡对岸的台湾。在安全措施上,压水堆的安全壳是厚实的圆穹顶混凝土耐压围壳,这是公众习惯的核电站反应堆结构形状

而日本福岛沸水堆的设计建造年代较早,按当时的安全认识和要求,安全壳只是一个相对较小的、安置在非耐压厂房内的钢壳而已。不少专研压水堆的专家对此也并不熟悉

而此次氢气爆炸,发生在安全钢壳和厂房之间,摧毁了非耐压的厂房外壳。所以看上去很像切尔诺贝利。不过,切尔诺贝利是既无外安全壳,也无内安全壳,福岛沸水堆所幸还有内安全壳,这也就是此次核事故有惊胆至今还无险的原因。顺便说一句,很多媒体所制作、引用的示意图,都把压水堆和沸水堆的结构图给搞错了。

日本福岛核电站的沸水堆结构,外壳破损了,关键的耐压密闭钢壳应该还在。(deutschina注:这点似乎需要求证,因为记得今天(这篇是14日的)看到的新闻有说坏掉了的

这是沸水堆,热交换是一回路直接进行。热效率高,但是循环水直接接触堆芯,很容易造成放射性污染,在事故时可靠性低。此外沸水堆大多建造较早,没有设置图中的厚重外安全壳。

这是压水堆,其冷却系统由两个循环回路组成。是目前世界上商业反应堆的主流

福岛核泄露的量级究竟是多少?

在放射医学和人体辐射防护中,辐射剂量的单位有多种衡量模式和计量单位。较为完整的衡量模式是“当量剂量”,是反映各种射线或粒子被吸收后引起的生物效应强弱的辐射量。其国际标准单位是希沃特,记作Sv。定义是每公斤(千克、kg)人体组织吸收1焦耳(J),为1希沃特。

 希沃特是个非常大的单位,因此通常使用毫希沃特(mSv),1mSv=0.001Sv。此外还有微希沃特(μSv),1μSv=0.001mSv。福岛核电站泄漏,在最严重的12日下午,监测到的数据是每小时1015μSv,即1.015mSv。这约相当于每个人半年内接受的天然辐射,10次X光检查接受的辐射。

  这些微量核辐射,主要是在释放水蒸气过程中所带出的,恰与爆炸并无关连,这也说明爆炸并为伤及核心密闭结构。不过在新闻传播的过程中,不知为何搞错了单位,微希被报道成毫希,1小时1000毫希已经是轻微辐射病剂量,因而引发了一定程度的恐慌。

某网站制作的示意图,把单位搞错了,放大了1000倍。实际上只是1.015mSv

中国核电站安全程度比福岛核电站先进一代

实际上,此次失事的日本核电站是60年代设计、1971年建成的老式核电站,其安全理念和防护措施介于切尔诺贝利和中国核电站的压水堆之间。由于缺乏外部厚实安全壳,只有内部钢安全壳。让其在极端情况下的安全防护措施仍存在一定问题。而且选址、备用电源等设计也欠缺妥善的考虑。

 中国最早的核电站浙江秦山核电站和广东大亚湾核电站也是引进80年代的法国压水堆技术,既有内部钢密闭安全壳,也有外部混凝土防爆安全壳。构成了这种中国公众熟悉的核电站形象。

  安全壳是坚固的90厘米厚混凝土外墙,安全壳里面衬有防辐射金属材料,是核反应堆的最后一道防线,也是最重要的安全保障措施。切尔诺贝利核电站就是安全壳结构缺失的最佳反例。

  即使在最坏的情况下,压水堆核电站的反应堆机组核燃料棒融化,彻底损毁。密闭的反应堆安全壳也能把绝大部分的放射性物质都控制起来。对周围环境和人员也基本没有任何影响。这种事故已经有发生的实例,那就是美国三里岛核电站事故,对周边的居民辐射量仅相当于一次X光拍片。

四代不同的核电站——核安全技术在不断进步

从安全角度(仅从安全角度,非其他角度),切尔诺贝利可算作第一代核电站——石墨反应堆,既无内安全壳,更无外安全壳;福岛可算第二代核电站,有内安全壳,但无外安全壳。中国大陆现有和在建的核电站可算作第三代核电站,内外安全壳兼有,可以说,这一代核电站,才是足够安全的核电站。(这种说法不够严谨科学,但比较通俗易懂,可以暂且这么分类。)

总体来说,中国现有和在建核电站还是足够安全的,在各种事故条件下,能够保证将核物质封闭在一回路里,封闭在耐压容器里,封闭在混凝土安全壳里。

  而且,目前中国已经引进了最先进的新一代核电站AP1000并实现国产化,这一代核电站的安全理念使用了被动安全的概念。例如在停堆散热的问题上,在反应堆顶部就建有一个数千吨的硼酸水箱了;一旦发生像福岛这样备用电源全部丧失的极端事故,仍可让可终止核反应的硼酸水直接倾斜而下,浸没核燃料棒,实现停止核反应的降温目的。而其他的更先进、更安全的核电站种类,世界各国也在不断探索和研制。

  这一次日本40年前建造的、濒临退役的老式核电站事故,并非说明核电站越来越不安全,而是从另一个反面说明了,核电站将会更加安全。

另一篇文章

麻省理工博士:为什么我不担心日本的核电站http://news.ifeng.com/world/special/ribendizhen/content-2/detail_2011_03/15/5166584_0.shtml

编者按:本核泄漏事故发生后,美国麻省理工学院科技政策与产业发展中心的博士Josef Oehmen撰写了一篇题为“为什么我不担心日本的核电站”的文章,以相对通俗的话语解释了核安全问题,在网络上流传甚广。

不过,因为其主业为“供应链危机管理”(supply chain risk management)研究,因此文章的一些观点也引起了部分读者的质疑。

其后,文章作者Josef Oehmen发出声明:本文原是他发给在日本家人的email。后经他表弟发布在自己的博客上后,得以病毒性传播。Josef特地声明他本人并非核电专家或工程师。

刊发此文主要为读者提供更多资讯,中文译者为V2EX网站上的Livid

以下为文章正文:

我在这里写下这些文字,是为了让大家对在日本发生的事情——核反应堆的安全问题,感到放心。事态确实严重,但是已经在控制范围内。这篇东西很长!但是你读完之后,你会比世界上任何记者都明白核反应堆究竟是怎么回事。

核泄漏确实已经发生,但是在将来不会有任何显著的泄漏。

“显著泄漏”大概会是个什么程度?打个比方说,可能比你乘坐一趟长途飞行,或是喝下一杯产自本身具有高程度自然辐射地区的啤酒,所受到的辐射要多一些。

我读了自从地震发生以来的所有新闻报道。可以说几乎没有一篇是准确或是无误的(当然也可能是因为地震发生之后在日本的通讯问题)。关于“没有一篇是无误的”,我并不是指那些带有反核立场的采访,毕竟这在现在也挺常见的。我指的是其中大量的关于物理和自然规律的错误,及大量对于事实的错误解读——可能是因为写稿子的人本身并不了解核反应堆是如何建造和运营的。我读过一篇来自CNN的3页长度的报道,每一个段落都至少包含一个错误。

接下来我们会告诉大家一些关于核反应堆的基本原理,然后解释目前正在发生的是什么。

福岛核电站的反应堆属于“沸水反应堆”(Boiling Water Reactors),缩写BWR。沸水反应堆和我们平时用的蒸汽压力锅类似。核燃料对水进行加热,水沸腾后汽化,然后蒸汽驱动汽轮机产生电流,蒸汽冷却后再次回到液态,再把这些水送回核燃料处进行加热。蒸汽压力锅内的温度通常大约是250摄氏度。

上文提到的核燃料就是氧化铀。氧化铀是一种熔点在3000摄氏度的陶瓷体。燃料被制作成小圆柱(想像一下就像乐高积木尺寸的小圆柱)。这些小圆柱被放入一个用锆锡合金(熔点2200摄氏度)制成的长桶,然后密封起来。这就是一个燃料棒(fuel rod)。然后这些燃料棒被放到一起组合为一个更大的单元,接着这些燃料单元被放入反应堆内。所有的这些,就是一个核反应堆核心(core)的内容。

锆锡合金外壳是第一层护罩,用来将具有放射性的核燃料与世隔绝。

然后,核心被放入“压力容器”中,也就是我们之前提到的蒸汽压力锅的比喻。压力容器是第二层护罩。这是一个坚固结实的大锅,设计用于容纳一个温度可能达到数百摄氏度的核心。在核心降温措施恢复前,压力容器起到一定的保护作用。

一个核反应堆的所有的这些“硬件”——压力容器,各种管道,泵,冷却水,被封装到第三层护罩中。第三层护罩是一个完全密封的,用最坚固的钢和混凝土制成的非常厚的球体。第三层护罩的设计,建造和测试只是为了一个目的:当核心完全熔融时,将其包裹在其中。为了实现这个目的,在压力容器(第二层护罩)的下方,铸造了一个非常巨大厚实的混凝土大碗,这一切都在第三层护罩的内部。这样的设计就像是为了“抓住核心”。如果核心熔融,压力容器爆裂(并且也最终融化的话),这个大碗就可以装下融化了的燃料及其他一切。这个大碗设计成让融化的燃料能够向四周铺开,从而实现散热。

在第三层护罩的周围包裹的是反应堆厂房。反应堆厂房是一个将各种风吹雨打挡住的外壳(这也是在爆炸中被毁坏的部分,我们稍后再说)。

福岛第一核电站1号机确实是通用电气的Mark I型沸水堆。新闻里露出钢筋的部分是最外部的厂房,里面的安全壳应该没事。

核反应的一些基本原理

铀燃料通过核分裂产生热量。大的铀原子分裂成更小的原子,这样就产生热量及中子(构成原子的一种粒子)。当中子撞击另外一个铀原子时,就触发分裂,产生更多的中子并一直继续下去。这就是核裂变的链式反应。 而现在的情况是,当一堆燃料棒凑在一起时就会很快导致过热,然后在45分钟后就会导致燃料棒融化。但是值得指出的是,在核反应堆内的燃料棒是绝对不可能导致像原子弹那样的核爆炸的。制造一颗原子弹实际上是相当困难的(不信你们可以去问问伊朗)。当年切尔诺贝利的情况是,爆炸是由于大量的压力积攒,氢气爆炸然后摧毁了所有的护罩,接着将大量的融化的核心挥洒到了外界(就像一颗 “脏弹”)。这样的情况为什么在日本没有发生,及为什么不会发生,请继续看下面。

为了控制链式反应的发生,反应堆操作员会用到“控制棒”。控制棒可以吸收中子,从而瞬间停止链式反应。一个核反应堆是这样设计的:当一切正常运转时,所有的控制棒是不会用到的。冷却水会在核心产生热量的同时带走热量(并转化为蒸汽和电力),并且在常规的250摄氏度的运转温度下还有许多余地。

而挑战在于将控制棒插入并停止链式反应后,核心依然在产生热量。虽然铀元素的链式反应已经停止,但是在铀元素的核裂变过程中会产生一些具有放射性的副产品,比如铯和碘同位素,这些元素的放射性同位素会最终衰变为更小的原子,然后失去放射性。在这些元素的衰变过程中,也会产生热量。因为它们不会再从铀元素中产生(在控制棒插入之后铀元素就停止衰变了),所以它们的数量会越来越少,然后在衰变结束的过程中,大约几天时间内,核心就会最终冷却下来。

目前让人头痛的就是这些余热。实如此,所以操作员们只能退到“纵深防御”中更进一层。这一切,无论我们看起来多么不可思议,但却是反应堆操作员的培训的一部分——从日常运营到控制一个要融化的核心。

于是在这个时候外界开始谈论可能发生的核心熔融。因为到了最后,如果冷却系统无法恢复,核心就一定会融化(在几个小时或是几天内),然后最后一层防线——第三层护罩及护罩内的大碗,就将经受考验。

但是此时最重要的任务是在核心持续升温时控制住,并且确保第一层护罩(燃料棒的锆锡合金外壳),及第二层护罩(压力容器)能够保持完整并尽可能多工作一段时间,从而让工程师们能够有足够的时间修好冷却系统。

既然让核心冷却是那么重要的事情,因此反应堆内实际上有多个冷却系统(反应堆给水清洁系统,衰变降温系统,反应堆核心隔离冷却系统,备用水冷系统,及紧急核心冷却系统)。而究竟哪一个失效了或是没有失效在此时无法得知。

所以想像一下,一个在炉子上的压力锅,持续地,慢慢地在进行加热。操作员在采取各种手段去消除其中的热量,但是锅内的压力在持续上升。于是当务之急是保住第一层护罩(熔点为2200摄氏度的锆锡合金),及第二层护罩——压力容器。而为了保住第二层护罩,其中的压力就需要时不时进行释放。因为在紧急时刻进行压力释放是一件重要的事,所以反应堆共有11个用于释放压力的阀门。操作员开始通过时不时地旋松阀门来释放压力容器内的压力。此时压力容器内的温度是550摄氏度。

这就是关于“辐射泄漏”的报道开始的时刻。我在上文中解释了为什么释放压力的同时实际上会释放第二类放射性物质(主要是N-16和氩),及为什么这样做其实毫无危险。放射性氮元素和氩对于人类健康没有威胁。

就在旋松阀门的过程中,发生了爆炸。爆炸发生在第三层护罩外部,反应堆厂房内。反应堆厂房不具有隔绝放射性物质的功能。虽然目前并不清楚到底发生了什么,但是这是一个很有可能的场景:操作员决定让压力容器内的蒸汽释放到厂房内,而不是直接到厂房外部(这样可以让放射性元素有更长的时间用于衰变)。而问题在于,由于核心内的高温,水分子会分解为氧和氢——一种易爆混合气体,于是也确实在第三层护罩外爆炸了。历史上也曾发生过一次类似的爆炸,不过是在压力容器内(因为压力容器没有设计好并且操作失误),进而导致了切尔诺贝利事件。而福岛核电站不会有这样的问题。氢氧混合气体是在设计核电站时需要考虑的一个巨大问题,因此反应堆在建造时就考虑到了不能让这样的爆炸发生在护罩内部。如果在护罩外部爆炸了,虽然也不是设想中的状况但是可以接受,因为即使爆炸了也不会对护罩产生影响。

因此,在阀门被旋松时,压力得以控制。而现在的问题时,如果水一直沸腾的话,那么水位就会持续下降。核心大概被几米深的水覆盖,使得其能够在空气中暴露前坚持几个小时或几天。而一旦没有水覆盖,那么暴露的燃料棒就会在45分钟后达到其2200摄氏度的熔点。而这样就会导致第一层护罩,燃料棒的锆锡合金外壳融化。

而这样的事情正在开始发生。冷却系统无法在燃料棒开始融化前恢复运转,不过燃料棒中的核燃料此时依然是完好的,包裹燃料的锆锡合金外壳已经开始融化。而目前正在发生的,就是一些铯和碘同位素开始随着释放出来的蒸汽,泄漏到反应堆外。最严重的问题——铀燃料,目前依然是受控的,因为氧化铀的熔点在 3000摄氏度。目前已经确认的是,检测到有一部分铯和碘同位素随着蒸汽泄漏到了大气中。

这似乎是一个启动“B计划”的信号。通过在大气中检测到的铯和碘同位素,操作员可以确认某一根燃料棒的外壳(第一层护罩)已经存在破损。“A计划”在于恢复某个常规冷却系统。为什么这个计划失败目前并不清楚,而一种可能性是海啸冲走或是污染了所有用于冷却系统的纯净水。

用于冷却系统的给水是非常纯净的,去除了所有矿物质的水。使用纯净水的原因在于:纯净水很大程度上不会被激活,因此可以保持相对无辐射。而如果是脏水,那么更容易捕获中子,进而变得更加具有放射性。这不会影响到核心——因为核心不会被冷却水影响。但是会使得操作员更难处理这些具有轻度放射性的活化水。

但是“A计划”失败了——系统无法冷却,并且也没有额外的纯净水。因此“B计划”被启动。而这就是目前正在发生的:

为了避免核心融化,操作员开始使用海水来冷却核心。我不是十分清楚,他们是用海水浸泡住压力容器(第二层护罩),还是淹住反应堆外壳(第三层护罩)。不过这个不是我们现在要讨论的。

要点在于核燃料现在确实已经冷却下来了。因为链式反应早就已经停止,所以目前只有非常少量的余热在产生。已经使用了的大量冷却水可以带走这些余热。因为是注入了大量的水,所以目前核心已经无法再产生足够的热量去大幅度提升压力。并且,海水中加入了硼酸。硼酸是一种“液体控制棒”。无论发生什么样的衰变,硼都可以捕获产生的中子并进一步加速核心的冷却。

福岛核电站曾经十分接近核心融化。但是,目前最坏的情况已被避免:如果没有将海水注入,那么操作员就只能继续旋松阀门以释放压力。第三层护罩必须完全密封,以避免其中发生的核心融化泄漏出任何的放射性物质,然后会经过一段等待期,等待护罩内的裂变副产品完成衰变,所有的放射性粒子会附着在护罩内壁。冷却系统最终会被恢复,融化的核心也会冷却至一个可控的温度。护罩内部会被清理。然后需要做一项棘手肮脏的事情——将融化了核心移出,将凝固了的燃料棒及燃料一块一块地装入运输装置,运送到核废料处理厂进行处理。根据损坏状况,核电站的这块区域需要进行修理或是彻底拆除。

核反应堆内的第一类放射性物质就是燃料棒中的铀元素,及放射性副产物铯和碘同位素。这些物质都在燃料棒内部。

而除此之外,还存在第二类放射性物质,产生于燃料棒外部。而首先需要说明的是,这些外部的放射性物质的半衰期都非常短,这意味着它们会在很短的时间内衰变为没有放射性的物质。“很短”的意思就是几秒。所以即使这类放射性物质被释放到自然环境中,它们也是毫无危害的。为什么呢?因为大约就在你读完“R-A-D-I-O-N-U-C-L-I-D-E”的这几秒内,这类物质就衰变到完全不具有放射性了。这类放射性物质就是氮-16(N-16),也就是氮气(构成大气的气体之一)的具有放射性的同位素。另外就是一些稀有气体比如氩。但是这些物质是如何产生的呢?当铀原子裂变时,会产生一个中子。大部分的这些中子都会撞击到其他的铀原子,由此链式反应就一直持续发生。但是其中的一些会离开燃料棒并撞击到水分子,或是冷却水中的空气。然后,一个不具有放射性的元素就会“捕获”这个中子,并变得有放射性。而就如前文所述,在数秒内它就会衰变到它本来的面目。

上面所描述第二类的放射性物质在我们接下来要讨论的核泄漏中非常重要。

接下来我会试着去总结目前的主要事实。冲击核电站的地震的威力是核电站设计时所能承受的威力的五倍(里氏震级之间的放大倍数是对数关系,所以8.9级地震的威力是8.2级,即核电站的设计抗震威力的5倍,而不是0.7的差异)。所以我们首先为日本的工程技术水平喝彩,至少一切目前是保下来了。(deutschina注:存疑,抗震设计讲的是烈度,不是强度。并且,即使里氏8.9级,是震中,而震中实际上是在海洋里面,两个概念模糊混淆了,所以至少我不认为有值得”喝彩“的地方。)

当8.9级地震冲击核电站时,所有的反应堆就自动关闭了。在地震开始后的数秒内,控制棒就插入到了核心内,链式反应即刻中止。而此时,冷却系统就开始带走余热。这些余热相当于反应堆正常运转时产生的3%的热量。

地震摧毁了核反应堆的外部电力供应。而这是核反应堆能够遇到的最严重的故障之一,因此,在设计核反应堆的备用系统时,“电站停电”是一种被高度关注的可能性。因为核反应堆的冷却泵需要电力以维持运转。而反应堆关闭后,核电站本身就不能产生任何电力。

在地震发生后的一小时内一切情况是平稳的。为紧急情况而准备的多组柴油发电机中的一组启动,为冷却泵提供了所需的电力。然后海啸来了,比核电站设计时所预料的规模要更巨大的海啸,摧毁了所有的柴油发电机组。

在设计核电站时,工程师们所遵循的一个哲学就是“纵深防御”。这意味着你首先需要为了你能够想象到最灾难的情况设计防卫措施,然后为了你觉得可能绝对不会发生的子系统故障设计方案,以确保即使这样的可能绝对不会发生的故障发生后,核电站依然可以安全。而一场巨大的摧毁所有柴油发电机组的海啸就是这样的一种极端情况。而所有的防卫的底线就是前面提到过的第三层护罩,将一切可能发生的最糟糕情况——控制棒插入或者未插入,核心融化或者未融化——容纳于其中。

当柴油发电机组被冲走后,反应堆操作员将反应堆切换到使用紧急电池。这些电池被设计为备用方案的备用方案,用于提供给冷却系统8个小时所需的电力,并且也确实完成了任务。

而在这八个小时内,需要为反应堆找到另外一种供电措施。当地的输电网络已经被地震摧毁。柴油发电机组也已经被海啸冲走。所以最后通过卡车运来了移动式柴油发电机。

整个事件从这一刻起开始变得糟糕。运来的柴油发电机无法连接到电站(因为接口不兼容)。所以当电池耗尽后,余热就无法再被带走。

在这个点上反应堆操作员开始按照“冷却失灵”的紧急预案进行处理。这是“纵深防御”中的更进一层。理论上供电系统不至于彻底失效,但是现实如此,所以操作员们只能退到“纵深防御”中更进一层。这一切,无论我们看起来多么不可思议,但却是反应堆操作员的培训的一部分——从日常运营到控制一个要融化的核心。

于是在这个时候外界开始谈论可能发生的核心熔融。因为到了最后,如果冷却系统无法恢复,核心就一定会融化(在几个小时或是几天内),然后最后一层防线——第三层护罩及护罩内的大碗,就将经受考验。

但是此时最重要的任务是在核心持续升温时控制住,并且确保第一层护罩(燃料棒的锆锡合金外壳),及第二层护罩(压力容器)能够保持完整并尽可能多工作一段时间,从而让工程师们能够有足够的时间修好冷却系统。

既然让核心冷却是那么重要的事情,因此反应堆内实际上有多个冷却系统(反应堆给水清洁系统,衰变降温系统,反应堆核心隔离冷却系统,备用水冷系统,及紧急核心冷却系统)。而究竟哪一个失效了或是没有失效在此时无法得知。

所以想像一下,一个在炉子上的压力锅,持续地,慢慢地在进行加热。操作员在采取各种手段去消除其中的热量,但是锅内的压力在持续上升。于是当务之急是保住第一层护罩(熔点为2200摄氏度的锆锡合金),及第二层护罩——压力容器。而为了保住第二层护罩,其中的压力就需要时不时进行释放。因为在紧急时刻进行压力释放是一件重要的事,所以反应堆共有11个用于释放压力的阀门。操作员开始通过时不时地旋松阀门来释放压力容器内的压力。此时压力容器内的温度是550摄氏度。

这就是关于“辐射泄漏”的报道开始的时刻。我在上文中解释了为什么释放压力的同时实际上会释放第二类放射性物质(主要是N-16和氩),及为什么这样做其实毫无危险。放射性氮元素和氩对于人类健康没有威胁。

就在旋松阀门的过程中,发生了爆炸。爆炸发生在第三层护罩外部,反应堆厂房内。反应堆厂房不具有隔绝放射性物质的功能。虽然目前并不清楚到底发生了什么,但是这是一个很有可能的场景:操作员决定让压力容器内的蒸汽释放到厂房内,而不是直接到厂房外部(这样可以让放射性元素有更长的时间用于衰变)。而问题在于,由于核心内的高温,水分子会分解为氧和氢——一种易爆混合气体,于是也确实在第三层护罩外爆炸了。历史上也曾发生过一次类似的爆炸,不过是在压力容器内(因为压力容器没有设计好并且操作失误),进而导致了切尔诺贝利事件。而福岛核电站不会有这样的问题。氢氧混合气体是在设计核电站时需要考虑的一个巨大问题,因此反应堆在建造时就考虑到了不能让这样的爆炸发生在护罩内部。如果在护罩外部爆炸了,虽然也不是设想中的状况但是可以接受,因为即使爆炸了也不会对护罩产生影响。

因此,在阀门被旋松时,压力得以控制。而现在的问题时,如果水一直沸腾的话,那么水位就会持续下降。核心大概被几米深的水覆盖,使得其能够在空气中暴露前坚持几个小时或几天。而一旦没有水覆盖,那么暴露的燃料棒就会在45分钟后达到其2200摄氏度的熔点。而这样就会导致第一层护罩,燃料棒的锆锡合金外壳融化。

而这样的事情正在开始发生。冷却系统无法在燃料棒开始融化前恢复运转,不过燃料棒中的核燃料此时依然是完好的,包裹燃料的锆锡合金外壳已经开始融化。而目前正在发生的,就是一些铯和碘同位素开始随着释放出来的蒸汽,泄漏到反应堆外。最严重的问题——铀燃料,目前依然是受控的,因为氧化铀的熔点在 3000摄氏度。目前已经确认的是,检测到有一部分铯和碘同位素随着蒸汽泄漏到了大气中。

这似乎是一个启动“B计划”的信号。通过在大气中检测到的铯和碘同位素,操作员可以确认某一根燃料棒的外壳(第一层护罩)已经存在破损。“A计划”在于恢复某个常规冷却系统。为什么这个计划失败目前并不清楚,而一种可能性是海啸冲走或是污染了所有用于冷却系统的纯净水。

用于冷却系统的给水是非常纯净的,去除了所有矿物质的水。使用纯净水的原因在于:纯净水很大程度上不会被激活,因此可以保持相对无辐射。而如果是脏水,那么更容易捕获中子,进而变得更加具有放射性。这不会影响到核心——因为核心不会被冷却水影响。但是会使得操作员更难处理这些具有轻度放射性的活化水。

但是“A计划”失败了——系统无法冷却,并且也没有额外的纯净水。因此“B计划”被启动。而这就是目前正在发生的:

为了避免核心融化,操作员开始使用海水来冷却核心。我不是十分清楚,他们是用海水浸泡住压力容器(第二层护罩),还是淹住反应堆外壳(第三层护罩)。不过这个不是我们现在要讨论的。

要点在于核燃料现在确实已经冷却下来了。因为链式反应早就已经停止,所以目前只有非常少量的余热在产生。已经使用了的大量冷却水可以带走这些余热。因为是注入了大量的水,所以目前核心已经无法再产生足够的热量去大幅度提升压力。并且,海水中加入了硼酸。硼酸是一种“液体控制棒”。无论发生什么样的衰变,硼都可以捕获产生的中子并进一步加速核心的冷却。

福岛核电站曾经十分接近核心融化。但是,目前最坏的情况已被避免:如果没有将海水注入,那么操作员就只能继续旋松阀门以释放压力。第三层护罩必须完全密封,以避免其中发生的核心融化泄漏出任何的放射性物质,然后会经过一段等待期,等待护罩内的裂变副产品完成衰变,所有的放射性粒子会附着在护罩内壁。冷却系统最终会被恢复,融化的核心也会冷却至一个可控的温度。护罩内部会被清理。然后需要做一项棘手肮脏的事情——将融化了核心移出,将凝固了的燃料棒及燃料一块一块地装入运输装置,运送到核废料处理厂进行处理。根据损坏状况,核电站的这块区域需要进行修理或是彻底拆除。

◆ 核电站会回到安全状态并始终安全。

◆ 日本处于第4级别INES核紧急状态:核电站内事故。这对于拥有电站的公司是件糟糕事情,对其他人来说没什么影响。

◆ 在释放压力时释放了一些放射性物质。包括非常小剂量的铯和碘同位素。如果在释放时你正好坐在出口上,那么你可能需要考虑戒烟使得你的期望寿命值回归从前。这些铯和碘同位素会被带入海水,然后就不会再检测得到。

◆ 第一层护罩出现了一些损坏,意味着一定数量的铯和碘同位素也被释放到了冷却水中,但是不会有铀或是其他什么脏东西(因为氧化铀不溶于水)。在第三层护罩内有用于净化水的装置,这些具有放射性的铯和碘同位素会在那里被去除并且存储为核废料。

◆ 用于冷却的海水会在一定程度上被活化。但是因为控制棒已经完全插入,所以链式反应是不会发生的。这就意味着“主要的”核反应没有发生,因此也就不会加剧海水的活化。链式反应过程的副产物(铯和碘同位素)在这个阶段也基本上消失殆尽。这进一步减轻了海水的活化。因此最坏情况就是:用于冷却的海水中会具有一定程度的放射性,但是这些海水也同样会经由内部净化装置进行处理。

◆ 最终会用正常的冷却水取代海水。

◆ 反应堆核心会需要进行拆除并运到处理厂,就像通常的燃料更换一样。

◆ 燃料棒和整个核电站需要进行彻底安全检查,以避免潜在的危险。这通常需要4到5年。

◆ 全日本的核电站的安全防护会进行升级,以确保它们可以抵抗住9级地震及随之而来的海啸(甚至更糟糕的情况)。

◆ 我认为更显著的问题是随后的全国供电。日本的55座反应堆中的11座已经全部关闭并等待进行检查,这直接减少全国20%的核电电力,而全国30%的电力靠核电供应。我目前还没有去考虑日本国内其他核电站可能发生的事故。短缺的电力需要依靠天然气发电站供应,而这些电站通常只是在供电高峰时用于应急。我不是十分清楚日本国内的石油、天然气和煤矿的能源供应链,及港口、炼油厂、存储及运输网络在此次地震中遭受了怎样的损失。这些都会导致电费增加,及用电高峰和重建时的电力短缺。

◆ 而这一切只是更大的问题的一部分。灾后应急需要解决避难所,饮用水、食物、医疗、运输、通讯设施等一系列问题,当然也包括电力供应。在一个供应链倾斜的时代,所有的这些领域中我们都会遇到挑战.




本文於 修改第 4 次
回應 回應給此人 推薦文章 列印 加入我的文摘

引用
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4565383
引用者清單(2)
2011/04/07 18:52 【中國論壇】 以鄰為豁
2011/03/16 04:04 【中國論壇】 瞭解日本的心態
 回應文章 頁/共2頁 回應文章第一頁 回應文章上一頁 回應文章下一頁 回應文章最後一頁
美國對於核危機的檢討
    回應給: deutschina(deutschina) 推薦2


麥芽糖
等級:8
留言加入好友

 
文章推薦人 (2)

Rosy
riquelme

這篇文章, 很有檢討誠意.

鑑於美國自布希開始, 以河蟹為名, 行媒體控制之手段. 到奧八螞更為烈, 本文全部轉貼.
【转帖文题目】︰

AP IMPACT: NRC and industry rewrite nuke history

 【转帖人ID】:麥芽糖
【原文作者】︰ JEFF DONN - AP National Writer
【文章关键字】︰核危機檢討。
【转帖理由】:
這篇核危機檢討文章, 很有檢討誠意.
【免责申明】:中国城论坛尊重版权与著作人权利,转帖是市民的个人行为,中国城论坛不对转帖承担联带责任。


出處:文学,休闲与资料杂项转帖专题! - 中國論壇 - udn城市https://city.udn.com/64086/4615531?tpno=0&cate_no=0#ixzz1QZPIfZga

AP IMPACT: NRC and industry rewrite nuke history

ROCKVILLE, Md. (AP) — When commercial nuclear power was getting its start in the 1960s and 1970s, industry and regulators stated unequivocally that reactors were designed only to operate for 40 years. Now they tell another story — insisting that the units were built with no inherent life span, and can run for up to a century, an Associated Press investigation shows.

By rewriting history, plant owners are making it easier to extend the lives of dozens of reactors in a relicensing process that resembles nothing more than an elaborate rubber stamp.

As part of a yearlong investigation of aging issues at the nation's nuclear power plants, the AP found that the relicensing process often lacks fully independent safety reviews. Records show that paperwork of the U.S. Nuclear Regulatory Commission sometimes matches word-for-word the language used in a plant operator's application.

Also, the relicensing process relies heavily on such paperwork, with very little onsite inspection and verification.

And under relicensing rules, tighter standards are not required to compensate for decades of wear and tear.

So far, 66 of 104 reactors have been granted license renewals. Most of the 20-year extensions have been granted with scant public attention. And the NRC has yet to reject a single application to extend an original license. The process has been so routine that many in the industry are already planning for additional license extensions, which could push the plants to operate for 80 years, and then 100.

Regulators and industry now contend that the 40-year limit was chosen for economic reasons and to satisfy antitrust concerns, not for safety issues. They contend that a nuclear plant has no technical limit on its life.

But an AP review of historical records, along with interviews with engineers who helped develop nuclear power, shows just the opposite: Reactors were made to last only 40 years. Period.

The record also shows that a design limitation on operating life was an accepted truism.

In 1982, D. Clark Gibbs, chairman of the licensing and safety committee of an early industry group, wrote to the NRC that "most nuclear power plants, including those operating, under construction or planned for the future, are designed for a duty cycle which corresponds to a 40-year life."

And three years later, when Illinois Power Co. sought a license for its Clinton station, utility official D.W. Wilson told the NRC on behalf of his company's nuclear licensing department that "all safety margins were established with the understanding of the limitations that are imposed by a 40-year design life."

One person who should know the real story is engineering professor Richard T. Lahey Jr., at Rensselaer Polytechnic Institute in Troy, N.Y. Lahey once served in the nuclear Navy. Later, in the early 1970s, he helped design reactors for General Electric Co.; he oversaw safety research and development.

Lahey dismisses claims that reactors were made with no particular life span. "These reactors were really designed for a certain lifetime," he said. "What they're saying is really a fabrication."

___

NUCLEAR LIFE RENEWED

Relicensing is a lucrative deal for operators. By the end of their original licenses, reactors are largely paid for. When they're operating, they're producing profits. They generate a fifth of the country's electricity.

New ones would each cost billions of dollars and take many years for approval, construction and testing. Local opposition may be strong. Already there is controversy about the safety of a next-generation design. Even before the nuclear crisis at the Fukushima Dai-ichi complex in Japan, only a handful of proposed new reactors in the U.S. had taken the first steps toward construction.

Solar and wind power are projected to make very limited contributions as electrical demand rises about 30 percent by 2035. So keeping old plants operating makes good business sense.

But it's challenging to keep existing plants safe and up to date.

The NRC has indicated that safety improvements are likely in the aftermath of melted fuel in the Japanese reactors in March. NRC inspectors have found some problems with U.S. equipment and procedures. But the agency says all sites are ready to deal with earthquakes and flooding. The NRC also has formed a task force to investigate further and report back in July. Both the task force and the NRC chairman have already suggested that changes will be needed.

Meanwhile, license renewals, which began in 2000, continue. The process essentially requires a government-approved plan to manage wear. These plans entail more inspection, testing and maintenance by the operator, but only of certain equipment viewed as subject to deterioration over time.

The plans focus on large systems like reactor vessels. It is assumed that existing maintenance is good enough to keep critical smaller parts — cables, controls, pumps, motors — in good working order for decades more.

Some modernization has been put in place — upgrades on fire-prevention measures and electronic controls, for example. But many potential improvements are limited by the government's so-called "backfit rule." The provision exempts existing units from safety improvements unless such upgrades bring "a substantial increase" in public protection.

Even with required maintenance, aging problems keep popping up.

During its Aging Nukes investigation, the AP conducted scores of interviews and analyzed thousands of pages of industry and government records, reports and data. The documents show that for decades compromises have been made repeatedly in safety margins, regulations and emergency planning to keep the aging units operating within the rules. The AP has reported that nuclear plants have sustained repeated equipment failures, leading critics to fear that the U.S. industry is one failure away from a disaster.

___

INDUSTRY, GOVERNMENT AS PARTNERS

Despite the aging problems, relicensing rules prohibits any overall safety review of the entire operation. More conservative safety margins are not required in anticipation of higher failure rates in old plants, regulators acknowledge.

The approach has turned relicensing reviews into routine approvals.

"Everything I've seen is rubber-stamped," said Joe Hopenfeld, an engineer who worked on aging-related issues at the NRC before retiring in 2008. He has since worked for groups challenging relicensing.

Numerous reports from the NRC's Office of Inspector General offer disturbing corroboration of his view.

For example, in 2002 the inspector general wrote: "Senior NRC officials confirmed that the agency is highly reliant on information from licensee risk assessments." Essentially that means the industry tells the NRC how likely an accident is and the NRC accepts the analysis.

Five years later, in a relicensing audit, the inspector general complained of frequent instances of "identical or nearly identical word-for-word repetition" of the plant applications in NRC reviews. The inspector general worried that the repetition indicated superficial reviews that went through the motions, instead of thorough and independent examinations.

The problems went beyond paperwork. The inspector general found that the NRC reviews usually relied on the plants to report on their operating experience, but the agency didn't independently verify the information.

NRC spokesman Eliot Brenner said staffers have now agreed to use their own words in their reviews of relicensing applications.

Christopher Grimes, former director of license renewal at the NRC, acknowledges that the agency "has to rely much more on the contents of the applications ... over direct inspection."

He blames budget constraints, but others view relicensing as a charade. Clean Ocean Action unsuccessfully challenged relicensing at the Oyster Creek plant in New Jersey, but chief scientist Jennifer Sampson said, "We really knew it was a waste of time."

___

FROM 40 YEARS TO 60 AND BEYOND

There are two thrusts to the revisionist argument that nuclear reactors can last for decades and decades: First, that they weren't really designed only for 40 years; second, that there is no technical limitation on any length of time. Tony Pietrangelo, chief nuclear officer at the industry's Nuclear Energy Institute, says 40 years for the initial license was simply how long it was expected to take to pay off construction loans.

In 2008, an NRC report was emphatic about the economic rationale of 40-year license, insisting that "this time limit was developed from utility antitrust concerns and not physically based design limitations from engineering analysis, components, or materials."

Even so, it felt compelled to acknowledge, in passing, that "some individual plant and equipment designs" were engineered for 40 years of life.

What's the truth? Fifty years ago, rural electricity cooperatives, worried about competition, did object to granting indefinitely long licenses to the new nuclear industry. But that's only part of the story.

The 40-year license was created by Congress as a somewhat arbitrary political compromise — "some long period of time, because nobody in his right mind would want to operate a nuclear plant beyond that time,'" said Ivan Selin, an engineer who chaired the NRC in the early 1990s.

Instead of stopping at 40 years, or even 60, the industry began advancing the idea of even longer nuclear life in discussions with its NRC partners starting several years ago.

In 2009, an issue paper by the industry-funded Electric Power Research Institute said that "many experts believe ... that these plants can operate safely well beyond their initial or extended operating periods — possibly to 80 or 100 years."

In November, an EPRI survey of industry executives found that more than 60 percent of executives strongly believed reactors can last at least 80 years.

EPRI engineer Neil Wilmshurst, vice president of its nuclear sector, said in an interview that many in the industry foresee the feasibility of reactors lasting even longer.

Adding its own push, Congress has set aside $12 million over the past two fiscal years for the Department of Energy to study if nuclear plants can last decades longer.

So for industry, the question is not if plants can run decades longer — that is now presumed true — but for how long?

"The research must start now, as it will take years to gather the data necessary to justify life extension out to 80 or 100 years," EPRI says in a background document.

___

HOW LONG CAN THEY GO?

Reactors and their surrounding equipment obviously were not made to fall apart the day after their 40th birthday. But how long can they safely last?

Other power generators have recognized the limits of design life. Though plants burning coal and other traditional fuels incorporate many similar systems to nuclear units — minus the atomic reactor — 90 percent close within 50 years, according to Department of Energy data analyzed by the AP.

Dana Powers, a member of the NRC's independent Advisory Committee on Reactor Safeguards, said he believes nuclear plants can last for just one license extension, or up to 60 years total. "I doubt they go two," he added.

Peter Lyons, a physicist and recent NRC commissioner, said several features of plants are extraordinarily hard to replace and could limit their lifetimes. They include reactor vessels, electric cables set in concrete, and underground piping.

In an AP interview at NRC headquarters here, agency chairman Gregory Jaczko said decisions on license extensions are based on safety, not economics.

Former NRC chief Selin says extension decisions should be made "on a case-by-case basis."

And industry executives and regulators acknowledge that more research is needed.

In the past, though, both parties found ways to shift assumptions, theories and standards enough to keep reactors chugging.

There's every reason to think they'll try to do it again.

___

The AP National Investigative Team can be reached at investigate(at)ap.org




回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4660420
Criticism up on Japan PM's handling of nuke crisis
    回應給: deutschina(deutschina) 推薦1


麥芽糖
等級:8
留言加入好友

 
文章推薦人 (1)

Rosy

Criticism up on Japan PM's handling of nuke crisis

TOKYO – Criticism of the Japanese government's handling of the crisis at a radiation-spewing nuclear power plant increased Saturday, with a new poll indicating three-quarters of the people disapprove and a key adviser quitting in protest.

A Kyodo News service poll released Saturday showed that Prime Minister Naoto Kan's support ratings were plunging.

The poll reported that 76 percent of the respondents think Kan is not exercising sufficient leadership in handling the country's earthquake, tsunami and nuclear triple crisis, up from 63.7 percent in the previous survey in late March.

It also showed 23.6 percent of respondents think Kan should resign immediately, up from 13.8 percent in the previous survey.

The nationwide telephone survey of 1,010 people eligible to vote was conducted Friday and Saturday. No margin of error was provided.

Toshiso Kosako, a professor at the University of Tokyo's graduate school and an expert on radiation exposure, announced late Friday that he was stepping down as a government adviser over what he lambasted as unsafe, slipshod measures.

Kan appointed Kosako after the magnitude-9.0 earthquake and tsunami struck northeastern Japan on March 11. The disaster left 26,000 people dead or missing and damaged several reactors at the Fukushima Dai-ichi nuclear power plant, setting off the world's worst nuclear crisis since Chernobyl in 1986.

In a tearful news conference, Kosako said he could not stay and allow the government to set what he called improper radiation limits of 20 millisieverts a year for elementary schools in areas near the plant.

"I cannot allow this as a scholar," he said. "I feel the government response has been merely to bide time."

Kosako also criticized the government as lacking in transparency in disclosing radiation levels around the plant, and as improperly raising the limit for radiation exposure for workers at Fukushima Dai-ichi, Kyodo reported.

The prime minister defended the government's response as proper.

"We welcome different views among our advisers," Kan told parliament Saturday in response to an opposition legislator's questions.

A government advisory position is highly respected in Japan, and it is extremely rare for an academic to resign to protest government policy.

The science and education ministry has repeatedly defended the 20-millisievert limit for radiation exposure as safe, saying that efforts are under way to bring the limit down to 1 millisievert. Some people have expressed concerns, noting that children are more vulnerable to radiation than adults.

Workers in the U.S. nuclear industry are allowed an upper limit of 50 millisieverts per year. A typical individual might absorb 6 millisieverts a year from natural and man-made sources such as X-rays.

Radiation specialists say cumulative doses of 500 millisieverts raise cancer risks. Evidence is less clear on smaller amounts, but in theory, any increased radiation exposure raises the risk of cancer.

Japan, which has 54 nuclear reactors, has long been a major proponent of atomic power, constantly billing its technology as top-rate and super-safe. Japan's government has also been trying to make deals to build nuclear power plants in other countries, although such attempts are likely to fall flat after the Fukushima Dai-ichi accident.

As the only country in the world to suffer atomic bombings, as it did at Hiroshima and Nagasaki during World War II, Japan has long had a powerful anti-nuclear movement, and such protests have become louder recently.

About 1,000 protesters gathered Saturday in Tokyo's Yoyogi Park, beating drums, shouting "No more nukes" and holding banners that read "Electricity in Tokyo, sacrifice in Fukushima."

"We knew all along nuclear power was dangerous. I just didn't know how to express myself," said one of the protesters, 50-year-old Yoshiko Nakamura, who was taking part in her second demonstration in two weeks. "This is a great opportunity to send a message and voice my fears."

Tokyo Electric Power Co., the utility that runs Fukushima Dai-ichi, said Saturday that the radiation exposures for two workers, upon more careful recalculation, was found to have reached near the crisis-time limit of 250 millisieverts.

Usually, TEPCO plant workers are limited to 100 millisieverts of radiation exposure over five years, with no year exceeding 50 millisieverts. That was raised to 250 millisieverts, with government approval, because of the crisis.

One worker was measured at 240.8 millisieverts, while another at 226.6 millisieverts. Both workers were temporarily hospitalized last month after being exposed to highly radioactive water that had leaked into the reactor turbine room.

Last week, TEPCO said one female worker at Fukushima Dai-ichi was exposed to radiation three times the legal limit, at 17.55 millisieverts. Exposure for women is limited to 5 millisieverts over 3 months because of pregnancy concerns.

TEPCO spokesman Junichi Matsumoto said the company had been preoccupied with monitoring radiation for male workers, and forgot that women's limits were far lower.

"We are extremely sorry," he told reporters last week.

Also on Saturday, parliament's lower house approved a special 4 trillion yen ($50 billion) budget to help finance post-tsunami rebuilding efforts, in what officials say will likely be the first installment of reconstruction funding.

The budget now goes to the less powerful upper house, where opposition is unlikely, and the budget is expected to win passage early next week.




回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4615017
東京專電: 日本高估本身能力 造成核安危機
    回應給: deutschina(deutschina) 推薦0


麥芽糖
等級:8
留言加入好友

 
日本高估本身能力 造成核安危機

日本東京電力公司福島第一核能電廠輻射外洩事件震撼全世界,核安事故升高成危機的經過一周來逐漸浮現,東京電力高估本身的能力,看輕事件的嚴重性導致事件的惡化。

輻射外洩造成旅日外國人士的恐慌而紛紛離境,日本媒體19日公布的民調顯示,距離福島核電廠約220公里的東京市民高達8成8對這項核安危機表示不安。

日本政府官員對媒體透露,11日發生東北關東大地震之後,美國很快表示,願意提供技術性的支援,但遭到日本政府的婉謝,理由是東京電力認為自己有能力處理問題。

消息人士並指出,美國務院和國防部曾向日方表示,美國有1979年三哩島核安事件的經驗,若日方能提供正確的訊息,美方可協助採取有效的對策。結果日本並未積極回應,讓缺乏情報的美方跳腳。

日本不僅對來自海外的協助態度不積極,且對外發表福島核能電廠災變動作遲延,例如,地震次日(12日),1號組機發生氫氣爆後數個小時才對外宣佈,種下了國外對日本疑心的種子,越來越多的國家因此要求僑民離開日本。

1號機組爆炸後,福島第一核能電廠又接二連三發生爆炸和火災事件。14日上午,3號機組發生爆炸,15日上午,4號機組發生火災,同時3號機組附近出現高輻射量。16日上午,4號機組又發生火災,3號則冒出白煙。

自地震導致核安事故後,東京電力公司發言人每天都不定時召開記者會,說明核電廠最新動態。但是東電人員對事故的發生經常表示原因不明,顯示出東電對核安事故已無法掌控,高估自己的能力並低估事故的嚴重性,造成了這次的核安危機。

日本目前經由空中和地面對燃燒的核電廠組機灌注大量的海水,據媒體報導,這種作法就是美方的建議,美軍並已著手組成一支450人的部隊專門對付輻射外洩,只要日本要求就可隨時馳援。

日方應汲取一周來在對付核安危機獲得的慘重教訓,即時放下身段,接受外國提供的技術知識已成為克服危機刻不容緩的課題,時間已極為有限,日方已不能再遲疑。

【2011/03/19 中央社】http://udn.com/




回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4570685
居民撤離的安全範圍
推薦0


lenganshih
等級:
留言加入好友

 

這是美方專家認為居民應該撤離核電廠範圍80km以外的安全標準依據
,與日方的僅20km不同:



本文於 修改第 1 次
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4568918
海嘯具破壞力的原因
推薦1


lenganshih
等級:
留言加入好友

 
文章推薦人 (1)

Rosy

看到這張圖,才知道為什麼海嘯對沿海岸而建築的核電廠的破壞力
是那麼的大:

回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4568903
必須灌漿封廠並投入更多的效死戰士
推薦1


lenganshih
等級:
留言加入好友

 
文章推薦人 (1)

小夜函

地面噴水空中灑水都是不夠滴,必須灌漿封廠並投入更多的效死戰士
才能停止核擴散,雖已拉了數公里電力線試圖啟動場內冷卻水系統,
但廠房顯然機具損毀嚴重,可能性很低,二號機又冒煙是證明:



本文於 修改第 2 次
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4568818
想到臺灣發生的事情
    回應給: deutschina(deutschina) 推薦2


麥芽糖
等級:8
留言加入好友

 
文章推薦人 (2)

Rosy
小夜函

呵呵!

老丐舉這個例子, 要得罪些人. 不過, 大家看看笑笑, 茶餘飯後.

南臺灣颱風侵襲, 臺灣中央舉行救災會議, 後來連任的陳菊市長說: 高雄市風和日麗, 不必去開那冗長無聊的會!



回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4568717
感觉现在的问题是 一些数据和现象看起来似乎是矛盾的
    回應給: hothill(hothill) 推薦2


deutschina
等級:
留言加入好友

 
文章推薦人 (2)

Rosy
小夜函

感觉现在的问题是 一些数据和现象看起来似乎是矛盾的

信息混乱

回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4568558
福岛核电站現況
    回應給: deutschina(deutschina) 推薦2


麥芽糖
等級:8
留言加入好友

 
文章推薦人 (2)

Rosy
小夜函

Handout shows damage sustained at the Fukushima ...
Handout shows damage sustained at the Fukushima ...
Japan Air Self-Defense Force CH-47 Chinook helicopters ...





本文於 修改第 2 次
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4568525
核輻射危害及災情資訊
推薦2


lenganshih
等級:
留言加入好友

 
文章推薦人 (2)

Rosy
小夜函

核輻射危害及災情資訊 :

回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=64086&aid=4566526
頁/共2頁 回應文章第一頁 回應文章上一頁 回應文章下一頁 回應文章最後一頁