"You are Israel's teacher," said Jesus, "and do you not understand these things? I tell you the truth, we speak of what we know, and we testify to what we have seen, but still you people do not accept our testimony. I have spoken to you of earthly things and you do not believe; how then will you believe if I speak of heavenly things? No one has ever gone into heaven except the one who came from heaven—the Son of Man. Just as Moses lifted up the snake in the desert, so the Son of Man must be lifted up, that everyone who believes in him may have eternal life. "For God so loved the world that he gave his one and only Son, that whoever believes in him shall not perish but have eternal life. For God did not send his Son into the world to condemn the world, but to save the world through him. Whoever believes in him is not condemned, but whoever does not believe stands condemned already because he has not believed in the name of God's one and only Son. This is the verdict: Light has come into the world, but men loved darkness instead of light because their deeds were evil. Everyone who does evil hates the light, and will not come into the light for fear that his deeds will be exposed. But whoever lives by the truth comes into the light, so that it may be seen plainly that what he has done has been done through God."
Enzymes are generally globular proteins and range from just 62 amino acid residues in size, for the monomer of 4-oxalocrotonate tautomerase, to over 2,500 residues in the animal fatty acid synthase. A small number of RNA-based biological catalysts exist, with the most common being the ribosome; these are referred to as either RNA-enzymes or ribozymes. The activities of enzymes are determined by their three-dimensional structure. However, although structure does determine function, predicting a novel enzyme's activity just from its structure is a very difficult problem that has not yet been solved.
Most enzymes are much larger than the substrates they act on, and only a small portion of the enzyme (around 3–4 amino acids) is directly involved in catalysis. The region that contains these catalytic residues, binds the substrate, and then carries out the reaction is known as the active site. Enzymes can also contain sites that bind cofactors, which are needed for catalysis. Some enzymes also have binding sites for small molecules, which are often direct or indirect products or substrates of the reaction catalyzed. This binding can serve to increase or decrease the enzyme's activity, providing a means for feedback regulation.
Like all proteins, enzymes are made as long, linear chains of amino acids that fold to produce a three-dimensional product. Each unique amino acid sequence produces a specific structure, which has unique properties. Individual protein chains may sometimes group together to form a protein complex. Most enzymes can be denatured — that is, unfolded and inactivated — by heating or chemical denaturants, which disrupt the three-dimensional structure of the protein. Depending on the enzyme, denaturation may be reversible or irreversible.
The Democratic-controlled U.S. Congress on Thursday approved budget blueprints embracing President Barack Obama's agenda but leaving many hard choices until later and a government deeply in the red.
With no Republican support, the House of Representatives and Senate approved slightly different, less expensive versions of Obama's $3.55 trillion budget plan for fiscal 2010, which begins on October 1. The differences will be worked out over the next few weeks.
Obama, who took office in January after eight years of the Republican Bush presidency, has said the Democrats' budget is critical to turning around the recession-hit U.S. economy and paving the way for sweeping healthcare, climate change and education reforms he hopes to push through Congress this year.
Obama, traveling in Europe, issued a statement praising the votes as "an important step toward rebuilding our struggling economy." Vice President Joe Biden, who serves as president of the Senate, presided over that chamber's vote.
"You are Israel's teacher," said Jesus, "and do you not understand these things? I tell you the truth, we speak of what we know, and we testify to what we have seen, but still you people do not accept our testimony. I have spoken to you of earthly things and you do not believe; how then will you believe if I speak of heavenly things? No one has ever gone into heaven except the one who came from heaven—the Son of Man. Just as Moses lifted up the snake in the desert, so the Son of Man must be lifted up, that everyone who believes in him may have eternal life. "For God so loved the world that he gave his one and only Son, that whoever believes in him shall not perish but have eternal life. For God did not send his Son into the world to condemn the world, but to save the world through him. Whoever believes in him is not condemned, but whoever does not believe stands condemned already because he has not believed in the name of God's one and only Son. This is the verdict: Light has come into the world, but men loved darkness instead of light because their deeds were evil. Everyone who does evil hates the light, and will not come into the light for fear that his deeds will be exposed. But whoever lives by the truth comes into the light, so that it may be seen plainly that what he has done has been done through God."
If I speak in the tongues of men and of angels, but have not love, I am only a resounding gong or a clanging cymbal. If I have the gift of prophecy and can fathom all mysteries and all knowledge, and if I have a faith that can move mountains, but have not love, I am nothing. If I give all I possess to the poor and surrender my body to the flames, but have not love, I gain nothing. Love is patient, love is kind. It does not envy, it does not boast, it is not proud. It is not rude, it is not self-seeking, it is not easily angered, it keeps no record of wrongs. Love does not delight in evil but rejoices with the truth. It always protects, always trusts, always hopes, always perseveres. Love never fails. But where there are prophecies, they will cease; where there are tongues, they will be stilled; where there is knowledge, it will pass away. For we know in part and we prophesy in part, but when perfection comes, the imperfect disappears. When I was a child, I talked like a child, I thought like a child, I reasoned like a child. When I became a man, I put childish ways behind me. Now we see but a poor reflection as in a mirror; then we shall see face to face. Now I know in part; then I shall know fully, even as I am fully known. And now these three remain: faith, hope and love. But the greatest of these is love.
Enzymes are generally globular proteins and range from just 62 amino acid residues in size, for the monomer of 4-oxalocrotonate tautomerase, to over 2,500 residues in the animal fatty acid synthase. A small number of RNA-based biological catalysts exist, with the most common being the ribosome; these are referred to as either RNA-enzymes or ribozymes. The activities of enzymes are determined by their three-dimensional structure. However, although structure does determine function, predicting a novel enzyme's activity just from its structure is a very difficult problem that has not yet been solved.
Most enzymes are much larger than the substrates they act on, and only a small portion of the enzyme (around 3–4 amino acids) is directly involved in catalysis. The region that contains these catalytic residues, binds the substrate, and then carries out the reaction is known as the active site. Enzymes can also contain sites that bind cofactors, which are needed for catalysis. Some enzymes also have binding sites for small molecules, which are often direct or indirect products or substrates of the reaction catalyzed. This binding can serve to increase or decrease the enzyme's activity, providing a means for feedback regulation.
Like all proteins, enzymes are made as long, linear chains of amino acids that fold to produce a three-dimensional product. Each unique amino acid sequence produces a specific structure, which has unique properties. Individual protein chains may sometimes group together to form a protein complex. Most enzymes can be denatured — that is, unfolded and inactivated — by heating or chemical denaturants, which disrupt the three-dimensional structure of the protein. Depending on the enzyme, denaturation may be reversible or irreversible.
Sometime around 6000 BCE a nomadic herding people settled into villages in the Mountainous region just west of the Indus River. There they grew barley and wheat using sickles with flint blades, and they lived in small houses built with adobe bricks. After 5000 BCE the climate in their region changed, bringing more rainfall, and apparently they were able to grow more food, for they grew in population. They began domesticating sheep, goats and cows and then water buffalo. Then after 4000 BCE they began to trade beads and shells with distant areas in central Asia and areas west of the Khyber Pass. And they began using bronze and working metals.
The climate changed again, bringing still more rainfall, and on the nearby plains, through which ran the Indus River, grew jungles inhabited by crocodiles, rhinoceros, tigers, buffalo and elephants. By around 2600 BCE, a civilization as grand as that in Mesopotamia and Egypt had begun on the Indus Plain and surrounding areas. By 2300 BCE this civilization had reached maturity and was trading with Mesopotamia. Seventy or more cities had been built, some of them upon buried old towns. There were cities from the foothills of the Himalayan Mountains to Malwan in the south. There was the city of Alamgirpur in the east and Sutkagen Dor by the Arabian Sea in the west.
One of these cities was Mohenjo-daro (Mohenjodaro), on the Indus river some 250 miles north of the Arabian Sea, and another city was Harappa, 350 miles to the north on a tributary river, the Ravi. Each of these two cities had populations as high as around 40,000. Each was constructed with manufactured, standardized, baked bricks. Shops lined the main streets of Mohenjo-daro and Harappa, and each city had a grand marketplace. Some houses were spacious and with a large enclosed yard. Each house was connected to a covered drainage system that was more sanitary than what had been created in West Asia. And Mohenjo-daro had a building with an underground furnace (a hypocaust) and dressing rooms, suggesting bathing was done in heated pools, as in modern day Hindu temples.
The people of Mohenjo-daro and Harappa shared a sophisticated system of weights and measures, using an arithmetic with decimals. Whether these written symbols were a part of a full-blown written language is a matter of controversy among scholars, some scholars pointing out that this and the brevity of grave site inscriptions and symbols on ritual objects are not evidence of a fully developed written language.
The people of Mohenjo-daro and Harappa mass-produced pottery with fine geometric designs as decoration, and they made figurines sensitively depicting their attitudes. They grew wheat, rice, mustard and sesame seeds, dates and cotton. And they had dogs, cats, camels, sheep, pigs, goats, water buffaloes, elephants and chickens.