網路城邦
回本城市首頁 優秀教育
市長:寧靜姐  副市長: AL
加入本城市推薦本城市加入我的最愛訂閱最新文章
udn城市情感交流親子家庭【優秀教育】城市/討論區/
討論區教育時事 字體:
上一個討論主題 回文章列表 下一個討論主題
數學是發明還是發現?(科學人)
 瀏覽1,128|回應0推薦0

寧靜姐
等級:8
留言加入好友

數學是發明還是發現?


在各領域都如此有用的數學,是人類發明的工具?還是人類發現的寶藏? 

大多數人認為數學有用是理所當然,像是科學家以數學公式來描述次原子事件、工程師用數學計算太空船的路徑。我們接受最先由伽利略倡議的觀點:數學是科學的語言,其文法可以解釋實驗結果,甚至預測奇特的現象。數學驚人的威力處處可見,譬如蘇格蘭物理學家馬克士威(James Clark Maxwell)的著名方程組,他的四個算式不只總結了1860年代所有已知的電磁現象,並且預示了無線電波的存在,比德國物理學家赫茲(Heinrich Hertz)偵測到它還早了20年。極少語言這麼有效率,能將具有價值的眾多材料,如此簡潔、精確又清楚地表達出來。愛因斯坦曾反思說:「數學做為人類思想的產物,獨立於經驗之外,怎麼可能和現實世界配合得如此天衣無縫?」

身為一位理論天文物理學家,我在每一個工作環節都會遇到「數學不合理的有效性」(unreasonable effectiveness of mathematics),這是1960年諾貝爾物理獎得主魏格納(Eugene Wigner)的用語。不論我是在研究哪些前身恆星系統會爆炸成Ia型超新星,或者計算太陽最終變成紅巨星時地球的命運,我所使用的工具或發展的模型都是數學。數學掌握自然世界的不可思議特質,讓我始終著迷。在10年前,我對這個課題有了更深刻的想法。

數學家、物理學家、哲學家、認知科學家,早已為這個謎團的核心議題,爭論了數百年。數學到底是如愛因斯坦所相信的,是一組發明出來的工具?還是數學確實存在於某個抽象的場域,而我們只是發現其中的真理?許多著名數學家,包括希爾伯特(David Hilbert)、康托(Georg Cantor),還有暱稱為布爾巴基(Bourbaki)的一群數學家,他們相信愛因斯坦的看法,相關的思想學派稱為形式主義(Formalism)。但是另一群傑出的思想家,包括哈迪(Godfrey Harold Hardy)、彭若斯(Roger Penrose)、哥德爾(Kurt Godel)則持對立的看法,這個思想學派稱為柏拉圖主義(Platonism)。

這項數學本質的爭論延續至今,似乎仍然很難解答。不過我相信,這是因為我們過度簡單的二分法提問「數學是發現還是發明?」,反而忽略了比較複雜的可能性:發明和發現都扮演了重要的角色。我認為兩者合起來才能解釋數學為什麼這麼有用。雖然消除發明與發現的對立性,並不能全然解釋數學不合理的有效性,但針對這個影響深遠的問題,即使是不完整的一小步,仍算有所進展。

既是發明也是發現

數學不合理的有效性有兩層很不一樣的意義,一者積極,一者消極。有時科學家為了將現實世界的現象量化,會發明特殊的方法。例如牛頓發明微積分是為了掌握運動與變化,於是將其切割成一連串無窮小的片段。因為這畢竟是量身打造的工具,所以這類積極發明當然有效。令人訝異的是在某些情況下,這些理論展現驚人的精確度。以量子電動力學為例,這是描述光和物質作用的數學理論。科學家計算電子的磁矩時發現,理論的計算值和2008年得到的最新實驗值1.00115965218073(以適當單位測量)符合,準確度竟高達兆分位。

也許更令人驚奇的是,有時數學家在發展一整套的研究時,心裡並沒有任何預設的應用。結果經過幾十年甚至幾百年後,物理學家才發現這個數學分支的研究,竟然和他們的觀察頗有相合之處。這種消極有效性的例子不勝枚舉,例如法國數學家迦羅瓦(屴ariste Galois)在19世紀初發展了群論,唯一目的是要判斷多項式的可解性。群的涵義很廣泛,它是由一些物件集合(例如整數)所構成的代數結構,並以某種運算(例如加法)來結合,而且該運算必須遵守特定規則。(其中包括單位元素如0的存在性,0加任何數的結果還是該數。)結果到了20世紀,這門非常抽象的數學,竟成為刻畫物質基礎,也就是基本粒子最豐饒的理論。1960年代,葛爾曼(Murray Gell-Mann)與尼曼(Yuval Ne

回應 回應給此人 推薦文章 列印 加入我的文摘