包括英國的Spitfire噴火式螺旋槳戰鬥機 欄截擊落德國V-2飛彈 與日本零式戰鬥機
從高空俯衝時都能接近音速(當然也要冒著飛機可能在空中解體的危險)
甚至於二戰時有些螺旋槳飛機飛行員報告在俯衝時達到超音速(未經證實)
螺旋槳飛機本身速度當然無法趕上V-2飛彈
因此他們往往會先飛在高空盤旋 等待英國雷達發現V-2飛彈位置後後
從高空俯衝追趕上德國V-2飛彈
再以機槍擊落飛彈或者以機體輕微碰撞將V-2飛行姿態搞翻而導致飛彈墜毀
但是水平飛行時螺旋槳旋轉速度 進入Transonic (近音速) 範圍時
推力會因螺旋槳末端產生 Shock Wave (震波) 破壞水平方向螺旋槳產生氣流而減低
(好比牛仔用力揮舞甩皮鞭時 皮鞭末端速度會超過音速 而發出四面擴散震波響聲)
螺旋槳飛機不是進行超音速飛行有效率的方式 但並非完全不可能
因為螺旋槳葉片也可能設計成能減少Shock Wave(震波) 的超薄流線型
參閱:
http://www.aerospaceweb.org/question/aerodynamics/q0031b.shtml
Supersonic Propellers
Is it possible for a propeller-driven plane capable of 500 miles an hour to break the sound barrier in a dive from 35,000 feet or so? If not, why?
- question from Sean
NACA research during the mid-1940s did show that supersonic prop-driven aircraft were feasible (可行的), but the key was developing propellers that could operate at or near the speed of sound. NACA began a high-speed propeller development program that culminated in the supersonic propeller, but this kind of prop is substantially different from those used on the fastest propeller-driven aircraft of the day, like the P-51 Mustang. Beyond speeds of Mach 0.9, the prop blades must become significantly shorter and thinner and the blade angle (the angle of attack of the blade) must be decreased compared to blades used on previous aircraft. An example is the test propeller mounted to the nose of an XF-88 research aircraft.
Supersonic propeller used on the XF-88 research plane
(note that the blades are feathered towards the camera and not in position for flight
事實上任何形狀的飛行體(包括螺旋槳葉片 )
只要符合 Whitcomb Streamline 雪笳型流線體的Area Rule (總截面積條件)
加上足夠的推力都可能進行超音速飛行
Streamline /Area Rule 其實才是超音速飛行 所須符合氣動力學原理的關鍵
早期的噴射引擎飛機 具有足夠的推力卻仍然無法突破音速
(在Transonic 近音速時 因產生 Shock Wave 造成飛機激烈震動 並喪失推力)
原因就在整體機身 (Airfoil) 未能達成 Streamline/Area Rule 的氣動力學條件
(尤其是: 機體腰身與機翼結合部份的束腰 與 改成後掠式的機翼 最為關鍵 )
本文於 修改第 7 次