網路城邦
回本城市首頁 時事論壇
市長:胡卜凱  副市長:
加入本城市推薦本城市加入我的最愛訂閱最新文章
udn城市政治社會政治時事【時事論壇】城市/討論區/
討論區知識和議題 字體:
上一個討論主題 回文章列表 下一個討論主題
三極電晶體通連電路與蛋白質 -- S. Pappas
 瀏覽407|回應0推薦1

胡卜凱
等級:8
留言加入好友
文章推薦人 (1)

胡卜凱

New Transistor Bridges Human-Machine Gap

Stephanie Pappas, TechNewsDaily Contributor

Humans and machines could be one step closer to merging thanks to a new transistor controlled by the molecule that powers biological cells.

The nano-sized device could be used in medical devices or prosthetics wired directly into the human body.

"Our devices make a bridge between the biological world and the electronic world," said Aleksandr Noy, who developed the transistor along with colleagues at Lawrence Livermore National Laboratories in California. "In effect, we made a biological protein talk directly with a nanoelectronic circuit."

Transistors are electronic components that can modulate or switch current on and off in a circuit. To make one that would respond to a biological molecule, Noy and his team borrowed from living cells.

First, they built the backbone of the transistor out of a carbon nanotube between two electrodes. Next, they insulated the electrodes and covered the nanotube with a mixture of fatty molecules called lipids and proteins. The covering formed a lipid "bilayer" - a double lipid membrane - much like those that make up the outer membranes of biological cells.

The researchers then poured a solution of sodium ions, potassium ions and adenosine triphosphate, or ATP, over the transistor while running a voltage through it. In cells, ATP is the primary source of energy. It fulfilled the same role in the transistor, powering the proteins embedded in the lipid bilayer.

These proteins began working, transferring sodium and potassium ions across the bilayer. The charges from the ions created an electrical field around the transistor, which then changed the ability of the transistor to conduct electricity by as much as 35 percent. The higher the concentration of ATP, the more the conductivity changed.

Getting a biological molecule to control the electric current in a transistor is a first step toward computers that would interface directly with the brain, Noy told TechNewsDaily.

That could include "futuristic" devices that would translate thought directly to typed words, he said, but could also have a more immediate application in the field of prosthetics.

To develop machines controlled by the mind, "we will need to have a way for our [brain cells] to talk to the electronic systems," Noy said. "I think what we demonstrated is a first step towards that distant goal."

http://news.yahoo.com/s/livescience/20100519/sc_livescience/newtransistorbridgeshumanmachinegap



本文於 修改第 1 次
回應 回應給此人 推薦文章 列印 加入我的文摘

引用
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3982920