網路城邦
回本城市首頁 時事論壇
市長:胡卜凱  副市長:
加入本城市推薦本城市加入我的最愛訂閱最新文章
udn城市政治社會政治時事【時事論壇】城市/討論區/
討論區知識和議題 字體:
看回應文章  上一個討論主題 回文章列表 下一個討論主題
大爆炸之前? -- 宇宙學的新理論 -- C. Moskowitz
 瀏覽7,147|回應16推薦3

胡卜凱
等級:8
留言加入好友
文章推薦人 (3)

綺綺大美女
犬犬可愛
胡卜凱

Glimpse Before Big Bang Possible

Clara Moskowitz, Special to SPACE.com, SPACE.com

The universe appears to be lopsided, and a new model

that aims to explain this anomaly could offer a glimpse of

what happened before the birth of it all.

When astronomers look out at the cosmos, the view in

one direction is turning out to be different than in the

other. Specifically, fluctuations in the density and

temperature of the radiation left over from the theoretical

Big Bang called the Cosmic Microwave Background

seem to be strangely larger on one side of the

universe.

A new model suggests this unevenness could be caused

by an imprint left over from before the beginning of the

universe, that is, before the cosmos ballooned almost

instantaneously from less than the size of an atom to

about golf-ball size. This process is called inflation.

Blowing up the balloon

"Inflation theory does predict that we have these density

and temperature fluctuations, but they should look the

same everywhere across the sky," said Caltech

astrophysicist Sean Carroll, who worked on the new

model, detailed in the Dec. 16 issue of the journal

Physical Review D. "But people who look at the data say

they see one side of the universe has bigger fluctuations,

and that's what we're trying to get a handle on."

Scientists think the normal variations in temperature and

density predicted by inflation became the seeds for the 

structure we see today throughout the universe. Soon

after inflation, the denser areas would have attracted

more matter and eventually grown into the clusters and 

galaxies we see today, while less dense regions would

have become voids mostly absent of galaxies, stars and

planets.

But the normal model of inflation can't account for the

asymmetry now noted. To try to explain that, Carroll,

astrophysicist Marc Kamionkowski and graduate student

Adrienne Erickcek (all at Caltech) tested a new version of

inflation theory, in which two fields are responsible for the

universe's early bloom of expansion.

In the standard theory of inflation, one field called the 

inflaton (not inflation) caused both the rapid expansion of

the universe and its density fluctuations. But

Kamionkowski and team found that an unevenness in the

density fluctuations could arise if inflation is caused by 

two fields instead of one. In the new model, the inflaton is

responsible for ballooning the size of the universe, while a

second field called the curvaton that had been previously

proposed introduces the density variations.

Before the Big Bang?

The model also intriguingly hints at what might have come

before inflation, since it suggests that the universe's

lopsidedness may be an aftereffect of a great fluctuation

that occurred before inflation began.

"It's no longer completely crazy to ask what happened 

before the Big Bang," Kamionkowski said. "All of that stuff

is hidden by a veil, observationally. If our model holds up,

we may have a chance to see beyond this veil."

The next step is to gather better data about the Cosmic

Microwave Background, to confirm that the unevenness

seen so far really holds up.

"So far it seems to be in the data, but that doesn't mean

it's in the universe," Carroll told SPACE.com. "There's a

chance this asymmetry is coming from errors in the data."

A new European Space Agency satellite called Planck,

designed to map the background radiation with

unprecedented sensitivity and resolution, is set to launch

in 2009. If Planck finds the radiation densities to be off-

balance, too, then cosmologists must really come to terms

with this puzzling aspect of inflation. Though it would

require some serious amendments to current theories,

many physicists would relish the challenge.

"That's what everyone wants, it's much more interesting

that way," Carroll said.

·           Top 10 Strangest Things in Space 

·           Greatest Mysteries: How Did the Universe Begin? 

·           10 Confounding Cosmic Questions 

轉貼自︰

http://news.yahoo.com/s/space/20090113/sc_space/glimpsebeforebigbangpossible;_ylt=AiGqGLey963P9Wu3TpYuWUUbr7sF



本文於 修改第 1 次
回應 回應給此人 推薦文章 列印 加入我的文摘

引用
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3210717
 回應文章 頁/共2頁 回應文章第一頁 回應文章上一頁 回應文章下一頁 回應文章最後一頁
宗教、哲學、和科學的分別
    回應給: 龍爪(kroraina2007) 推薦2


胡卜凱
等級:8
留言加入好友

 
文章推薦人 (2)

犬犬可愛
胡卜凱

我的閱讀興趣和範圍包括宇宙學。這是我會注意到並轉貼一些相關報導的原因。 

你涉及到的議題很多,也很複雜,我沒有能力做系統性(或言之成理)的討論。 

所有的各門科學都有各自的一定假設。其「論述」或理論是否成立,有許多判準,例如: 

*      是否言之成理?

*      是否與觀察到的現象(現實)相容?

*      是否能解釋其他觀察到的現象(現實)?

*      是否能預言在那些條件下,我們能觀察或複製出那些已知現象?是否能預言一些尚未觀察到的現象(現實)?(或:在那些條件下,我們應該能觀察到那些尚未觀察到的現象?)

*      是否與其他科學的理論相容?

*      是否有實際上的應用?

*      ... 

等等。 

「大爆炸」理論在目前之所以被大多數科學家接受,因為它能滿足相當多的上述判準。 

我曾說過,哲學的功能在試圖回答一些最根本的問題。我想這也是宗教的功能之一。由於我們還沒有「所有」的知識,因此我們目前還所有能力回答這些最根本的問題。所有宗教、哲學、或科學在這一方面的努力,都只是「努力」或「憶測」。當然,「憶測」有很多種: 

** 有些有某種根據;

** 有些完全沒根據;

** 有些是胡說八道;

** 有些是有目的的欺騙。 

至於如何分別這個或那個「憶測」是那一種,我想可以使用上述關於科學「論述」或理論是否成立的種種「判準」。

我認為科學和宗教以及哲學的不同大概有三點:

a.     科學理論必須接受該學門中研究者的「檢驗」或「公論」;宗教或哲學理論只要有一個(論述者以外的)「信眾」或「信徒」接受。

b.     科學理論必須和現實及其他相關理論「相容」;宗教或哲學理論只要和一個(論述者以外的)「信眾」或「信徒」的想法「相容」。

c.     科學理論必須滿足多數人生活中的某些物質或生理「需要」;宗教或哲學理論只要滿足「信眾」或「信徒」的意識需要。

宗教和哲學的分別,(我認為)在於以下三點:

1)     個別論述「言之成理」的「程度」;

2)     個別論述和現實或其他理論「相容」的「程度」;

3)     個別論述對於其他學問研究「相關」或「指導能力」的「程度」。



本文於 修改第 6 次

回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3213821
宇宙時空的形成 !( 完 )
推薦0


龍爪
等級:7
留言加入好友

 
宇宙時空的形成 !( 完 )

回到那個宇宙大爆炸的理論
如果我們無法超越自己星系的觀測地位
那又怎麼能假設這種宇宙光線的奔跑遠離就是遠離呢 ﹖
在另一個宇宙時空中也或許真是無極生太極、太極生兩儀的狀態呢 ﹖
真的有所謂宇宙邊緣會出現嗎 ﹖宇宙邊緣連接著什麼呢 ﹖另一個時空 ﹖
解破這個問題可不是得諾貝爾獎的問題而已 !

以溫度談論宇宙時空形成的問題、我覺得並不正確
對光線的了解是以我們地球人類與物質基礎去理解的
光線在宇宙中並不會《 發光 》也不被消耗、更不被《 看見 》
光線只有在照射到物質後才被看見、這是人類眼睛的問題
與光線以什麼形態存在於宇宙時空中一點關係也沒有
光線照射到物質、物質吸收了熱量、光線熱能被消耗
地球及太陽系其他星體不斷接受來自太陽的熱能及其他宇宙熱能
所有的宇宙射線、光線都一直在宇宙中四處跑、但我們看起來宇宙是黑的
是不是這種宇宙光線的熱能電磁波維持住宇宙的運轉呢 ﹖我想可能是
所有恆河沙數是否是以一種宇宙引力互控及互動在運轉呢 ﹖我想應該是
如果那天時間一到地球吸收的熱能夠多了、那地球會不會爆炸開成為另一個太陽
在這個銀河系中、我們這個太陽系中存不存在另一個新太陽的空間環境 ﹖

在我們的感官中、我們是以生命感受時空的存在
這一點同樣在兩千多年前的佛法中已經說明過了
要用辯證唯物論來解釋這些時空概念的佛法也幾乎是一樣
追根究底是對生命意義的追尋
而非純科學的研究
這是我最後的想法
土匪窩的簽名檔、當然是要錢還是要命
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3212509
宇宙時空的形成 !( 三 )
推薦0


龍爪
等級:7
留言加入好友

 
宇宙時空的形成 !( 三 )

由於我們無法脫離我們所處銀河系的運轉範圍
所以我們自然看不到我們自己的轉動與位置變化
這與坐火車的人、大家都在火車裡感受不到其他人的移動一樣
可火車外的人確清楚的看到那火車上的人隨火車在移動
所以我認為只要人類那天能擺脫或離開這個太陽系運轉的位置
甚至離開這個銀河運轉的位置、那人類可能進行宇宙旅行
人類移動的速度可以遠遠超過光速、人類只要不隨銀河運轉就行
讓兩個銀河運轉過程中、人類介於邊緣而不陷入其中
從銀河的極左邊到銀河的極右邊、或轉移到另一個銀河系
一些太空科技電影有時也會談到類似的問題
但我總覺得那些講法老是故弄玄虛
有種故意欺騙觀眾不懂的用意
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3212481
宇宙時空的形成 !( 二 )
推薦0


龍爪
等級:7
留言加入好友

 
宇宙時空的形成 !( 二 )

第一那就是宇宙所有光線的問題
第二是宇宙中星體銀河運轉速度的問題
太陽繞著銀河轉、銀河繞著宇宙中心轉、這速度是多快呢 ﹖
因為我們地政現在的科技還無法觀測到這些運轉速度
所以我們不知道這個速度到底有多快、但應該可以用數學方式算出來
第三是光線所到之處時空如何形成、速度如何存在、速度與光線的關係

我的簡單想法是:
宇宙銀河運轉的速度必然超過光的速度、否則光線不可能存在
而這個宇宙運轉的速度產生時空引力或說是宇宙電磁場
所有宇宙物質就存在這個時空中運行、包括光線
而那些我們看到的、在天空中跑的《哈雷慧星》及流星們
確極可能是不動的星體、事實上在跑的是我們的太陽系及銀河系
當我們星系運轉經過這些不動星體時因磨擦以至於它們就產生了燃燒的尾巴
土匪窩的簽名檔、當然是要錢還是要命
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3212472
宇宙時空的形成 !( 一 )
推薦0


龍爪
等級:7
留言加入好友

 
宇宙時空的形成 !

胡大大怎麼談這個問題,,這問題太大,,太大啊

中國文字說
上下四方謂之宇、古往今來謂之宙、宇宙就是時空觀念
據說在敦煌莫高窟裡有一個洞上方有一幅古人畫的宇宙圖
畫的是宇宙銀河星系如何運轉的狀態
可惜我還沒有到過敦煌實地去看看是否真的有這一個圖案

宇宙大爆炸理論、這個西方天體科技的假設我是存疑的
甚至我認為這是一個唬弄其他國家科技發展的騙局
少說我也讀了幾年理工科系的書、也算是學理工的
有些西方的科技理論、我就實在不信、尤其太空科技這一方面

也真巧最近與一個去作《在家僧》的堂哥談到佛理、佛法的問題
這位堂兄對佛理、佛法的理解沒有比我深、甚至是一知半解
對於佛法中三世諸佛的理論還搞不清楚
我簡單的說:三世諸佛就是一個時空理論、佛是無限存在的
以現代的幾度、幾度時空理論來說、佛法的這種科技說法早了兩千六百年
也所以色即是空、空即是色、不生不滅、心經講的就是這個
說起來其實並不難理解、可人的雜唸太多或所執太多
而無法接受這麼簡單的佛法真理

說我們地球繞著太陽轉、地球自己也在自轉
太陽繞著銀河轉《 我們的銀河位置據說在宇宙中心偏南下方 》
據說銀河也繞著宇宙中心轉、而宇宙的體積還在繼續擴張中《大爆炸繼續中》
這個理論來自一個宇宙射線不斷遠離、直到宇宙邊緣的觀測
我們沒有那麼多的學問與設備去觀察及研究機會去理解這一些宇宙現象
但這些問題我也經常思考、有時總有些問題就讓我想通了
土匪窩的簽名檔、當然是要錢還是要命
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3212463
大爆炸之後兆分之一秒的狀況 -- K. Than
推薦0


胡卜凱
等級:8
留言加入好友

 

Astronomers Detect First Split-Second of the Universe

Ker Than, Staff Writer, posted: 16 March 2006

Scientists announced today new evidence supporting the

theory that the infant universe expanded from subatomic

to astronomical size in a fraction of a second after its

birth.

The finding is based on new results from NASA's

Wilkinson Microwave Anisotropy Probe (WMAP) satellite,

launched in 2001 to measure the temperature of radiant

heat left over from the Big Bang, which is the theoretical

beginning to the universe.

This radiation is known as the Cosmic Microwave

Background (CMB), and it is the oldest light in the

universe.

Using WMAP data, researchers announced in 2003 that

they had pieced together a very detailed snapshot of the

universe as it was about 400,000 years after the Big

Bang, and that they had determined things like its age,

composition and development.

The previous data showed that the universe was about

13.7 billion years old. It also revealed that it wasn't until

about 200 million years after the Big Bang that conditions

were cool enough for the first stars to form. Scientists

were also able to conclude that the universe is composed

of about 4 percent real matter, about 23 percent dark

matter, and about 73 percent dark energy. Nobody

actually knows what dark matter or dark energy are,

however.

The new WMAP observations, announced at a NASA

press conference today, reveal what the universe was

like in the first trillionth of a second after the Big Bang.

From the microwave background, researchers teased out

a new signal called the "polarization signal."

"This new signal is roughly 100 times weaker than the

signal we analyzed three years ago and about a billion

times less than the radiant warmth we feel from the Sun,"

said Lyman Page, a WMAP team member from Princeton

University.

The researchers collected observations of this

polarization signal to create a map of the early universe,

allowing them to test a sub-theory within the Big Bang

theory, called "inflation."

Inflation theory states that the universe underwent a rapid

expansion immediately following the Big Bang.

"During this growth spurt, a tiny region, likely no larger

than a marble, grew in a trillionth of a second to become

larger than the visible universe," said WMAP researcher

David Spergel, also from Princeton University.

The new observations reveal that the early expansion

wasn't smooth, with some regions expanding faster than

others.

"We find that density fluctuations on the 1- to 10-billion-

light-year scale are larger than density fluctuations on the

hundred-million-light-year scale," Spergel said. "That is

just what inflation theory predicts."

These fluctuations are thought to have led to clumping of

matter that allowed the formation of galaxies.

Brian Greene, a physicist from Columbia University who

wasn't involved in the research, called the new findings

"spectacular" and "stunning."

"A major question that people have asked for decades is

where do stars and galaxies come from? The answer

coming from WMAP data supports the idea that quantum

fluctuations are the answer," Greene said. "WMAP's data

supports the notion that galaxies are nothing but quantum

mechanism writ large across the sky."

The new findings brings humanity closer to answering one

of its oldest questions, that of where we come from,

Greene said.

 "WMAP certainly doesn't answer this question, but its

data is taking us one giant step closer to the answer by

giving us a precise quantitative look at the universe's

earliest fraction of a second," Greene said. "It's a tiny

window of time, but it's a critical one in our quest to learn

what happened at time zero itself."

The new findings have been submitted to Astrophysical

Journal.

·           Universe Has At Least 30 Billion Years Left 

·           The Universe: Still Boggling The Minds of 'Finite Creatures'

·           About WMAP and the Cosmic Microwave Background 

轉貼自︰

http://www.space.com/scienceastronomy/060316_wmap_results.html



本文於 修改第 1 次
回應 回應給此人 推薦文章 列印 加入我的文摘
引用網址:https://city.udn.com/forum/trackback.jsp?no=2976&aid=3210733
頁/共2頁 回應文章第一頁 回應文章上一頁 回應文章下一頁 回應文章最後一頁